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Roles of Adiponectin in Acute Kidney Injury
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Adiponectin (APN) is an adipokine shown to have potent antiobesity, antiatherosclerotic, suppression of
macrophage-to-foam cell transformation, and inhibition of proinflammatory cytokines. Studies have
revealed that plasma concentration of APN is approximately three times higher in patients with end-
stage kidney disease than in healthy people. However, low plasma levels of the hormone have been
shown to elicit a protective effect against inflammation in animal models of ischemia/reperfusion-
induced acute renal failure. This review summarizes the possible molecular signaling pathways
involved in the effects of APN accumulation in the circulation on acute kidney injury in humans and in
rodents.

Copyright � 2012, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.
1. Adiponectin and adiponectin receptors

Adiponectin (APN),which is also referred to asAcrp30, adipoQ,ApM1,
and GBP28, contains 244 amino acids and was first discovered by
several independentgroupsnearlyat thesame time in the late1990s.1

There are four structural domains based on its primary sequence: an
N-terminal signal peptide, a short hypervariable region, a collagen
domain, and a C-terminal globular domain homologous to C1q.2

Adipose tissue is the most abundant source of APN. Recent
studies have demonstrated that other cells, namely colonic mucosa
cells, liver cells, skeletal muscle cells, placental cells, salivary gland
epithelial cells, bone-forming cells, myocytes, and myofibroblasts,
also release APN, although in lower amounts.1 Another interesting
characteristic of APN is that it exists in five configurations and six
forms: globular APN (gAPN), full-length APN (fAPN), lowmolecular
weight APN, medium molecular weight APN, high molecular
weight APN, and serum albumin-bounded low molecular weight
APN.1 The monomer fAPN is the basic unit of these configurations
and forms. The gAPN form is the globular domain of fAPN, which
might be generated by elastase digestion.3 Other configurations
include an oligomer and amultimer of fAPN, both of which are held
together by disulfide bonds.

To date, there are three known receptors for APN: APN receptor 1
(AdipoR1), APN receptor 2 (AdipoR2), and T-cadherin. AdipoR1 and
AdipoR2 are integral membrane proteins containing seven trans-
membrane domains; however, in both receptors, the N terminus is
treet, Taipei City 110, Taiwan.
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internal and the C terminus external, making them structurally and
functionally distinct from G-protein-coupled receptors.4 AdipoR1 is
abundantly expressed in skeletal muscle, whereas AdipoR2 is
predominantly expressed in liver. AdipoR1 is the high-affinity
receptor for gAPN and AdipoR2 is the intermediate-affinity
receptor for gAPN and fAPN.4,5 Recent studies have revealed that
AdipoR1 and AdipoR2 are also expressed in brain, placenta, colon,
kidney and cancer tissue, and could be regulated by cytokines and
insulin as well as by exercise.6e13 T-cadherin, an atypical glycosyl
phosphatidyl inositol-anchored cadherin, is expressed on endo-
thelial andmuscle cells. Hug et al demonstrated that T-cadherinwas
the receptor for the eukaryotically-expressed hexameric and high-
molecular-weight forms but not for the trimeric or globular forms
of APN in endothelial cells.14 T-cadherin lacks a cytoplasmic domain
and is, therefore, believed to act as a coreceptor.15 Activation of
AdipoRs is mediated by a novel adaptor protein containing a pleck-
strin homology domain, a phosphotyrosine binding domain, and
a leucine zipper motif (APPL1), AMP-activated protein kinase
(AMPK), and peroxisome proliferator-activated receptor alpha
(PPARa).5,16 Other potential and downstream signaling molecules/
pathways include the mitogen activated protein kinase-glucose
transporter 4 pathway, ΙkΒ kinase (IKK)-nuclear factor kappaB
(ΝFkΒ) signaling, caspase signaling, endothelial nitric oxide (NO)
synthase (eNOS)-heat shock protein 90 (HSP90), and the TSC 1/2-
TOR/p70 S6 kinase pathway.4,5,16

2. Acute kidney injury and inflammation

Acute kidney injury (AKI) occurs in 1% of hospital admissions and up
to 7% of hospitalized patients develop AKI.17 An increase in plasma
by Elsevier Taiwan LLC. All rights reserved.
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proinflammatory cytokine levels predicts mortality in patients with
AKI.18 Potential tubular and vascular factors, aswell as inflammatory
processes, are involved in the pathogenesis of AKI.19 Inflammation is
nowbelieved to play amajor role in the pathophysiology of AKI.20,21

Experimental studies in AKI have utilized I/R, sepsiseendotoxemia,
and nephrotoxic models.22 These models of AKI are associated with
an increase in infiltrating neutrophils in the kidneyand induced
inflammatory reactions which can be attenuated by anti-
intercellular adhesion molecule-1 (ICAM-1) and/or anti-CD44
therapy.23e29 Other leukocytes such as natural killer cells also play
A
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Figure 1 Schematic diagram presenting the signaling pathways of adiponectin involved in th
stress), vascular endothelial cells will induce adhesion molecule (ICAM, VCAM, P-selectin,
neutrophils from endothelial cells into interstitium. Activation of foam cells from macrophag
secretion via the NFkB activating pathway, leading to renal epithelial cell apoptosis. In add
kidney injury. Treatment of APN can induce the NO production by eNOS in endothelial cells
adhesion molecules. Furthermore, APN inhibit cytokines or chemokines production by foam
an important role in renal tubular cell apoptosis during ischemia/
reperfusion (I/R) injury. Macrophage-mediated inflammation has
been described in various kidney diseases including glomerulone-
phritis, diabetic nephropathy, and unilateral ureteric obstruction as
well as ischemic AKI in rats and mice.30e34

3. Anti-inflammatory effect of APN

Consistent with the epidemiologic association of reduced APN
levels in patients who are obese and in those who have type 2
KI (ischemia, sepsis)
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diabetes, in vitro studies have shown that APN can reverse the
deleterious effects of tumor necrosis factor-a (TNFa) and other
cytokines that trigger an inflammatory signaling cascade, enhance
leukocyte endothelial interactions and thereby lead to some of the
early processes of atherosclerosis.35,36 APN suppresses macro-
phage-to-foam cells transformation,37 human aortic smooth
muscle cell proliferation,38 and the development of atherosclerosis
by attenuating the expression of vascular cell adhesion molecule-1
(VCAM-1) and ICAM-1 in vessel walls.39 APN also protects against
endothelial monolayer hyperpermeability induced by angiotensin
II or TNFa; this effect has been observed for both gAPN and fAPN
and is associated with amelioration of actin stress fibers, intercel-
lular gap formation, and b-tubulin disassembly.40

It has been shown that endothelial NO availability increases in
response to APN through a mechanism that involves APN stimu-
lated binding of regulatory Hsp90 to eNOS.41,42 Consistent with
these in vitro data, adiponectin inhibition of leukocyte adhesion in
TNF-inflamedmicrovascular networks in vivo has been shown to be
hindered by pharmacologic blockade of eNOS with N-nitro-L-
arginine methyl ester.43 Pathways that involve protein kinase A or
cyclic adenosinemonophosphate(cAMP)-dependent protein kinase
signaling have also been implicated in the effects of adiponectin in
the endothelium.44

Ouedraogo et al reported that gAPN mediated suppression of
TNF-a-induced activation of NF-kB was accompanied by cAMP
accumulation but was blocked by inhibitors of adenylate cyclase or
PKA in endothelial cells.43,44 These findings imply that multiple
pathways are involved in the suppression of endothelial inflam-
matory signaling by APN to attenuate kidney injury.

4. Antiapoptotic effects of adiponectin

The antiapoptotic activity of adiponectin has been demonstrated in
human cardiac microvascular endothelial cells. Pretreatment with
adiponectin was shown to stimulate APPL1-dependent AMPK
activation, reverse Akt inhibition in a phosphatidylinositol 3-
kinase-dependent manner, block IKK-NFkB and phosphatase and
tensin homolog signaling, reduce caspase-3 activity, block Bax
translocation, and inhibit endothelial cell apoptosis.45

In a mouse I/R model, myocardial apoptosis and TNFaexpression
were observed in APN knockout (KO) mice; however, the effects
were inhibited in mice exposed to fAPN.46 In addition, APN-KO
mice exhibited enhanced formation of NO, superoxide, peroxyni-
trite, and inducible NO synthase (iNOS)/gp91-phox protein
expression after I/R injury; however, the effects were significantly
reduced in mice that had been exposed to gAPN before reperfu-
sion.47 Kataoka et al reported that gAPN treatment significantly
inhibited angiotensin II induced apoptosis in human umbilical vein
endothelial cells by promoting and stabilizing the association
between eNOS and HSP90.48

In vascular smooth muscle cells, APN was shown to antagonize
inorganic phosphate (Pi)-induced apoptosis and to ameliorate the
accelerating effect of TNFaon Pi-induced apoptosis by restoring the
Gas6-mediated survival pathway via AMPK.49 In renal epithelium
cells, we found that APN protective effects against I/R-induced
apoptosis by inducing the expression of hemeoxygenase-1 and
the PPARa dependent pathway, which itself was mediated through
the enhancement of cyclooxygenase-2 and 6-keto prostaglandin
F1a expression.In addition, I/R-induced renal dysfunction (elevated
serum creatinine and urea levels), inflammation (number of infil-
trating neutrophils, myeloperoxidase activity), and apoptotic
responses (apoptotic cell number and caspase-3 activation) were
attenuated in APN-treated mice.9 Those data suggest that APN
protects the cell from apoptosis via an AMPK-dependent, PPARa-
dependent antiapoptotic mechanism.9
5. Conclusion

Inflammation plays a major role in the pathophysiology of AKI.
Tubular and endothelial cells recruit neutrophils, macrophages,
natural killer cells, and lymphocytes into the kidneys, which induce
the generation of inflammatory cytokines and chemokines in
response to AKI. APN elicits its effects through multiple pathways
(Figure 1), resulting in the suppression of endothelial inflammatory
signaling and the inhibition of apoptosis in tubular epithelium cells.
However, APN concentrations have been shown to be higher in
patients with chronic renal disease than in healthy controls but
lower in obese and type 2 diabetic patients as well as in mice with
acute renal failure. These conflicting results between chronic and
acute renal failure may be associated with the degradation rate of
APN, or to some other APN-specific protease, or both. Further
studies are warranted to investigate these discrepancies.
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